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The recently proposed a-expansion method for calculation of the hadronic spectrum in 
QCD is tested by the simple example of the harmonic oscillator. It appears that three terms 
of the expansion of the generalized S-matrix at large momenta are sufficient to calculate the 
whole spectrum to very good accuracy. 

1. INTR~OUCTI~N 

Recently, a method of calculation of the hadronic spectrum in QCD was proposed 
by one of the authors [l, 21. The method uses the asymptotic expansion for 2-point 
functions of gauge invariant composite operators for large Euclidean momenta, 
and ends up with the expansion for the hadronic masses in terms of an auxiliary 
parameter 01 which is set to one at the end of the calculation. The masses have the 
form 

(l-1) 

where p is a renormalization point, g, is the corresponding renormalized coupling, 
and /3(g2) is the Gell-Mann-Low function. The functions C,(a) are expanded in cy. 
and the expansion coefficients are expressed in terms of Feynman integrals of QCD. 

The method is quite general and applies to all theories with asymptotic freedom. 
If the physical spectrum is discrete, then the functions C,(a) approach finite limits 
as 01-+ 1. This corresponds to confinement. If there is no confinement, then the 
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ijq and/or gluon production would lead to a continuous spectrum. In this case the 
functions C,(a) should be more singular as cy + 1; the mass spacings 

would tend td zero to reproduce the continuous spectrum. In the above discussion 
we ignored the physical thresholds, but in the real world the resonances are narrow, 
so that it makes sense. The method can be generalized to include these effects [2], 
but we do not need it in the specific case which we are going to discuss below. 

The aim of this paper is twofold. First, we are going to clarify the details of the 
general method of the n-expansion [2]. We also review the infrared regularization 
through the PadC equations [l, 21 and establish the relationship with the moment 
conditions used in Ref. [3]. We apply this to the simple example of the harmonic 
oscillator. As was noted [3], the oscillator can be viewed as an asymptotically free 
theory with confinement. The &function in this case is simply p m= -g2. We use 
the generalized S-matrix, introduced there, and then proceed in the same way as 
in Ref. [2]. 

The second aim of this paper is to check the convergence of the n-expansion. 
If one needs, say, ten terms to obtain reasonable accuracy then, of course, the method 
is useless. To our own surprise, the a-expansion coefficients decrease quite rapidly. 
The o13-approximation fits the spectrum within a few percent (see Fig. 1). As is 
discussed at the end of the paper, there are some reasons to expect the same phe- 
nomenon in QCD. 
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FIG. 1. The leading harmonic oscillator trajectories, labeled by the radial quantum number 
s = 0, 1, 2. Shown are the exact trajectories and the first three approximants, given by 01l, oiz, and 
c?; (see (4.15) with 01 = 1). 
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2. a-EXPANSION IN QCD 

Let us describe the general framework of the a-expansion in QCD [2]. The basic 
idea is to introduce the infrared cutoff, R, in such a way that at finite R the gauge 
invariant Green’s functions possess only poles for positive R2, while for -k2R2 > 1 
they remain unchanged. Then as k + co we return to the original theory and the 
poles should correspond to the physical spectrum. 

A practical way to introduce such a cutoff is to start with the Pad6 approximant 
in k’ - /l”, where A2 is some point in the deep Euclidean domain, and then increase 
the rank N of the approximant together with (1. As was shown in Refs. [I] and [2] 
(also see below), in the limit of N, II + cc only the ratio 

R = N/A 

remains in the approximant and the poles Mi2 depend on R as follows: 

(2.1) 

Mi = (l/R) F&R), P-2) 

where gR2 is the effective coupling corresponding to the scale R-l in momentum 
space. It is related to g, as usual 

1 

In pR = fuw dg”/p( g”). (2.3) 
gR2 

It follows from the general theory of the Pad6 approximant that all the masses are 
real and all the residues are positive, due to spectral conditions of the original 
S-function. The functions F, can be expanded in gR2, and expansion coefficients 
can be expressed in terms of diagrams of the ordinary perturbation theory. 

Altogether it means that the perturbation theory is modified in such a way that 
the masses are finite and can be expanded in the coupling constant at finite R. 

Now, if we expand masses in terms of g, , rather than g, , then in each order 
of g, the function F, would depend on R only logarithmically, so that as R - cc 
the factor R-l in (2.2) takes over and all the masses condense at zero, thus reproducing 
the continuous spectrum of quarks and gluons. Also, if we expand the approximant 
itself in g,’ and tend R -+ cc in each order, we obtain the ordinary perturbation 
theory with the quark-gluon cut in the momentum plane. 

But, of course, one should not do it since the effective coupling g, increases as 
R + a3. Actually, the functions Fi depend on the following argument (see (2.3)): 

.Y = pR exp - pR exp(--a/g,“). (2.4) 

The perturbation theory corresponds to expansion of F at .smaN x, whereas we are 
interested in the opposite limit, x ---f CO. So there is a critical value of coupling 
constant 

(gw2krit - alIn PR (2.5) 
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such that x - 1. The perturbation theory can be applied only at smaller values 
of g, . As R -+ cc the perturbation theory can never be applied. We expect, however, 
that the functions Fi increase as x in this limit so that the factor R-l in (2.2) is 
cancelled and the masses tend to the limits (1.1). The detailed discussion of these 
phenomena is contained in previous papers [l, 21. 

Now, the a-expansion is continued as follows. We replace the factor R-l in (2.2) 
by R-“’ and minimize with respect to R: 

M, = min(Z+&(gR)). (2.6) 

The value of R (or gR) at the minimum is determined by 

-F;fl(gR2) = Fiu2. (2.7) 

At small (y. one may expand Fi and p in gR2 

Fi = F?(O) + F;(O) g,” t . . . . 

p = -agR4 - ba2gR6 + ..., 

and one arrives at the ol-expansion: 

g,’ = m[Fi(0)/F:(O)a]l12 + ..., 

(2.8) 

(2.9) 

(2.10) 

s g: 
In II~~ = 01~ In~+bbn~- ___ 

P?A 

f In Fi(0) + 201 ($f$,“’ + g (-f& - 3 _ b ln 5, 
I 

I . . . 
. (2.11) 

Now, if the functions Fi increase like R as R + cc [4], then the position R, of 
the minimum tends to infinity as 01 + 1. Say, for 

we find 

F; --+ AiR + Bi (2.12) 

a2 Bi 
Ra = 1 - a2 ,L& ’ 

(2.13) 

--+ Ai[l - (1 - a”) ln(1 - cG) + **.I. (2.14) 

Thus, in the limit 01 + 1 one returns to the original theory. One may put 01 = 1 
in the first line of (2.11) and then one arrives at the form (1.1) of the a-expansion. 
In Section 4 we apply this method to the harmonic oscillator. 
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3. PADS EQUATIONS AND MOMENT CONDITIONS 

Let us consider some 2-point function, e.g., 

S(k") = Sd.'exp(ik.u)(~~~(.u)~~(O):i, (3.1) 

where # is a quark field and zj# is a gauge invariant composite field. We are going 
to construct the PadC approximant to S(k2) in the deep Euclidean domain 

-k2 --f +A2 > (mass)z. (3.2) 

The PadC approximant is the ratio of two polynomials 

PI,” = &,W)M&(k”) (3.3) 

which coincides with S at k2 = -A2 within 2N derivatives 

s - [S]; = O(kz + &)“N+l. (3.4) 

The coefficients of the polynomials are to be determined from (3.4) or, equivalently, 
from 

(WW [Q,S - PNlk?=pA2 = 0, I = 0, l,..., 2N. (3.5) 

The last N equations involve only QN and can be rewritten in terms of dispersion 
integrals as follows 

s m dt QN(t> Im s(f + io) t’ = o 

(t/A” + l)zN+l ’ 
r = 0, I,..., N - 1. 

0 
(3.6) 

Once QN is known, PN is given by the following expression: 

pN(t) = QN(t) S(t) - $ La ds “““‘ls”-“i; + i”) (s)21. (3.7) 

Equations (3.6) imply that (3.7) is indeed an Nth-degree polynomial in t. 
Thus the problem is reduced to the solution of the integral equations (3.6). 
Suppose that 

Im S + Atu (3.8) 

as t + co. In our case, as t --t co, S is determined by the free quark loop (due to 
asymptotic freedom) and 

v = 1. (3.9) 

However, it will be convenient not to specify v in what follows. The solutions Q$‘) 
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of (3.6) for the asymptotic form of S are given by Jacobi polynomials and have the 
following form [2]: 

where 

r(2N A 
fCz) = T(N + 1 - 

I - z) l-(-z) 
1, - =) T(N + 17 (N2Y” 

(3.10) 

(3.11) 

is a meromorphic function with poles at z = O,..., N and zeros at 2 = N + 1 - V, 
N + 2 - v,..., 00. The contour c in (3.10) encloses the poles of,fi 

Now let us decompose S as 

Im S = At”[l + a(t)], (3.12) 

where o(t) includes all the corrections to the asymptotic form. As it was shown 
in [I, 21 the homogeneous equation (3.6) can be transformed to the inhomogeneous 
form 

const Q:)(s) = 101 $ Q,(t)(l + o(t)) G(s, t). (3.13) 

The constant on the left-hand side is arbitrary and can be absorbed in Q. The Green’s 
function G(.s, t) is given by the double Mellin-Barns integral 

(3.14) 

where contour c encloses the poles of f(z) and contour c’ encloses the zeros of f(z’). 
Now one can let N and (I tend to infinity at fixed ratio R. The Jacobi polynomial 

reduces to the Bessel function 

Q;‘(s) ---f (R&2)-v Jv(2Rs19 (3.15) 

and G(s, t) can be expressed as an integral of two Bessel functions [2]. All we need 
are the integrals 

K,(s) = JO1 -$ (R2t)A G(s, t). (3.16) 

A straightforward calculation using (3.4) gives as N = co, R fixed, 

K,(s) = f (-SP)“” Jv + v> 
WL=O m! r(m + v)(m - A) r(-A) *  

Now, if o(t) can be represented by the series [5] 

o(t) = c ait+ 

(3.17) 

(3.18) 
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with increasing indices Ai, then we may expand QN as 

QN(f) = i qn(tR2)1’ 
?I=0 

and arrive at the following equation for coefficients qn: 

qm + f Fmq, = q,n” 
71=0 

(3.19) 

(3.20) 

with 

%n” = 
(- 1)“” 

m!r(nz+v+ 1) ’ 

We may now construct the iterative solution for qm 

IJm = ano - c FmnqnO + c FmgF~nqn” - .a-. (3.23) 
12 P,n 

Since the terms in F,,, are proportional to positive powers of R, this perturbation 
theory makes sense only at small R. For the continuation to large R we need the 
technique of the a-expansion, described in the previous section. 

As is well known, in QCD the asymptotic expansion at large momenta involves 
powers of In t as well as inverse powers of t. The corresponding integrals can be 
found by differentiating (3.16) with respect to h (see Ref. [2] for more details). 

In the simple case of the harmonic oscillator we do not meet logarithms, and all 
the indices Ai are integers. Tn this case F,, simplifies since F(Ai - n) kills all the 
terms but those with either 

n < Ai (3.24) 

or 
n=Aifm. (3.25) 

Thus, in a given order in R2 the corrections to qmo in (3.23) will involve only finite 
number of terms. For example, if we keep only one term u,(P)~ in (3.22), then 

C-1)” f, _ *Jp w - 2)(m + 4 
qvL= n7!r(/n+v+l) I [ (nz f 2) r(v + 1) 

r(v - I)@7 + v) + 1 - 
(mi l>r(v+2) (171 + l)(m + 2)(m + V + l)(m + v + 2) II . (3.26) 
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The corresponding correction to the Q-function is given by the superposition of 
Bessel functions with shifted index v. The simplest way to obtain this expression 
is to start as in Ref. [3] with the Ansatz 

Q(R”t) = A,(R2t) + -f (1,+,(R2t) Cm , (3.27) 
,11=1 

where 

A,(z) = z-+J”(271/2) 

and to find the coefficients C, directly from (3.6). If one tends il - N 
then one arrives at the moment conditions [3, Eq. 2.71 

s 
3c dr Q(f) Im S(t + i0) tn = 0, 72 = 0, l)...) co. 

0 

(3.28) 

03 (3.6), 

(3.29) 

If now one expands Im S in inverse powers of t, and uses (3.26) for Q, then all the 
integrals can be calculated explicitly 

I -dtt 
'0 

.+r-~fl"+~(R2t)=~R-2'.+7-"+l) 

We arrive thus to the following system of equations for Cm: 

r(v --p + 1 + 77) 
f f C,,0p(R2)p r(,71 + p _ ,7) = 0, '7 = 07 I,..*, a* 

>,,=o P=O 

Here by definition 

We observe that, for given p and m, all the moment relations starting from n 
and higher are automatically satisfied. 

= 

(3.30) 

(3.31) 

=mfp 

Thus, in a given order in R2 we may leave only a finite number of &‘s. In the 
first order we leave Co, C1 and find 

c w+ 1) +,l,,m 
l r(l) 

- = 0 
r(l) ’ 

71 = 0. (3.32) 

The moment relations for n 3 1 are automaticaliy satisfied in the first order in R2. 
In the higher orders the higher coefficients and the higher-order corrections to the 
previous coefficients would appear. 

The explicit expressions for C, in the case of harmonic oscillator will be given 
below. 
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4. ~-EXPANSION FOR HARMONIC OSCILLATOR 

An appropriate analog to the 2-point function in potential theory for confined 
systems, as discussed in Ref. [3], is given by 

SC”, k2) = D(-v, kZ)/D(v, k2), v=l+$ (4.1) 

where D(v, k2) is the usual Jost function. 
To test the method described in the previous section, we take as an example the 

harmonic oscillator potential 

V(r) = g4r2, (4.2) 

and obtain the exact 9, given by 

S(v, k2) = (4g2)” 
qv/2 + 3 - k2/4g2) 

r(- v/2 + ;- - k2/4g2) . 

Expanding 9 for large k2 we obtain the series expression for the “cut”: 

(4.3) 

(4.4) 

where y = $(g4R4), t = k2, and R is an arbitrary constant. 
Each step here and in what follows involves some tedious but pedestrian algebra 

and we present the results only. 
We now impose confinement by removing the cut in (4.4). This is done by system- 

atically applying the moment conditions (3.29): 

1 m dt PQ(v, t) Im S(v, t) = 0 (4.5) ‘0 

for all integers n, with the Ansatz (3.26). As R -+ co, Q should coincide with D. 
These moment conditions are solved by the following Q function: 

Q(v, z) = 4(z) + Y[~&+I(z) + (v - 1) ~v+,Wl 

+ Y2 [2L+,(z) + G, (5v - 7) (4L3(4 + q++4(z))] 

+ Y3 [(i) A+3W + (2v - ;) A”,,(Z) 

+ (v2 - F v  + !g)(L+dz) + qLl”+s(z,)] 

+ O(Y3, (4.6) 

where z = R2t. 
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The functions /l,(z) are defined for convenience as “cutless” Bessel functions, 
introduced in (3.28). 

The bound states are given by the zeros of Q(v, t). The phenomenological approach 
would be to fix the scale R in t = z/R2 by fitting one “experimental” fact, say, the 
ground state of the system. This was done in Ref. [3] for Q(v, t) to order y2 = (&4R4)2. 
Here we apply the a-method instead, which fixes the scale R without resort to any 
fitting. 

A particular state will be specified by two quantum numbers, v = If & and s, 
the radial quantum number. Thus a state is given by 

Q(v, t(v, 4) = 0, 

where Q is given by (4.6). 
First we expand a particular solution of (4.7) in powers of y. 
This gives 

(4.7) 

where 

R2& 4 = zdv, 4 + yzdv, 4 + y2z,(v, 4 + y3z3(v, 4 + W4) (4.8) 

21 = :2 + (v” - 1)/z, ) 
z. = (1/52,)[4 - (l/z0)(7v2 + 17) + (3/2z,2)(v2 - l)(v2 - 9)], 
zj = (1/7~,~)[16/5 + (72/5z,,)(v2 - 9) + (l/152$)(5357 + 590~~ -- 187~~) 

+ (1/62b3)(v2 - l)(y2 - 25)(13v2 - 61)]. 

The zeroth-order solution q,(v, s) is given by the sth root of fl,(z), or 
J”(2(Z&, s))‘/“) = 0. 

For convenience we define 

x = y/q,(v, s) = jg4R4/z,(v, s), 

T(V, s) = l(v, s)/2g2 (4.9) 

and rewrite (4.8) as 

T = (~z,,x)-~~~(z,, + xz,z, + x~z,,~z~ + x3z03z3 + --), (4.10) 

where we have suppressed the quantum numbers v and s. 
To apply the a-method now, we take the logarithm of (4.10) and introduce the 

auxiliary parameter 01, which ultimately must be set equal to one. 

In 7 = 4 In($zJ + xzl + x2(z,z, - &z12) 
+ xyz3z02 - z2zlzo + Qz13) - +a In x 
+ W4). (4.11) 

For a given 01, we now minimize the “mass” 7 with respect to the scale x and 
expand the result in powers of 01. The result of this operation is 

x(v, s) = cr(l/2z,) - *a2(a/z,3) + a3(b/z,4) + O(d), (4.12) 
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where 

KAUS AND MEDAL 

a = z,z, - $Zl”, 

b = (z,z, - ~z,2)2/=, - gz3z02 - z,2,z, + $zl”). 

Since x = $g4R4/zo(v, s), it is interesting to note how the scale R behaves as a 
function of the quantum numbers (v, s). 

R2(v, s) = (gz,,(v, s))li2 z!h s> 
2z,(v, s) + (v” - 1) 

(4.13) 

Now, for large v, the first zero of the Bessel function 2(z,,(v, O))‘/” --+ v and therefore 
when v > 1 

R2(v, 0) m (61j2/24)(a/2g2)v. (4.14) 

Thus along the top trajectory, R(v. 0) will grow proportional to v1i2, which compares 
to the classical turn-around point. This dynamic growth is, of course, absent when 
R is fixed by one phenomenological fit. This v1j2 growth of R allows linear trajec- 
tories [6]. Here, it appears already in the first order in OL, although the slope will 
not be correct. 

Finally, the result (4.12) for x(v, s) is substituted in the expression for the state (4.11). 
We obtain 

In t(v, s)/2g2 = 4 ln(QzJ + (&)(l - In 01 + In 22,) 

+ (601>2(~2%/~12 - a> 
- (&x)3(2z2%~/z14 - z3z02/z13 - z2zo/z12 + 8) 

+ e3, (4.15) 

to be evaluated at cx = 1, where the zi are the same as in (4.8). 
It is the expression (4.15), with 01 = 1, which is to be compared with the familiar 

result for the harmonic oscillator: 

t(v, s)/2g2 = 1 + v + 2s, v = I-/- fr, s = 0,1,2 )... . (4.16) 

5. SUMMARY AND CONCLUSIONS 

As one can see from Fig. 1, the a-expression works exceedingly well for the harmonic 
oscillator [7]. In general, it should be an asymptotic expansion (since the Stirling 
formula was used to construct the perturbation theory), but the first three coefficients 
are decreasing by a factor of about 4. The actual expansion parameter is not ~1, 
but &. The origin of this factor can be easily traced. It appears because the perturba- 
theory expands in (g/k)4. If the expansion parameter would be (g/k)N, then the 
a-expansion would go in a/N. 

In other words, the a-expansion works better the faster the corrections to the 
asymptotic freedom behave with momentum. In QCD there are two sources of 



TEST OF THE a-EXPANSION METHOD 77 

corrections--the quantum fluctuations, which give rise to the logarithmic corrections, 
and the instanton and meron field configurations [8], which give rise to very rapidly 
varying corrections, 

-(p$/k2)5’9. 

The estimates [8] show that pO is large enough to neglect the quantum fluctuations 
(the effective coupling g2/8.rr2 is less or about + at this scale). In this situation, the 
a-expansion might work even better than for the harmonic oscillator. The problem 
here is to find a systematic method of calculation of meron and instanton corrections. 
Note, that in Ref. [2] only quantum fluctuations were taken into account. In the 
limit of infinite number of colors, it was legitimate since the instantons and merons 
display themselves later than quantum fluctuations. In the physical world, with 
three colors it seems to be the opposite. 

The above considerations suggest that the most important corrections in QCD 
are powerlike as in the oscillator case and that the a-expansion in QCD should 
work well. 
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